

pibootctl

pibootctl is a utility for querying and manipulating the boot configuration of
a Raspberry Pi. It is a relatively low level utility, and not intended to be
as friendly (or as widely applicable) as raspi-config. It provides a
command line interface only, but does attempt to be useful as a basis for more
advanced interfaces (by providing input and output in human-readable,
shell-interpretable, JSON, or YAML formats) as well as being useful in its own
right.

The design philosophy of the utility is as follows:

	Be safe: the utility manipulates the boot configuration and it’s entirely
possible to create a non-booting system as a result. To that end, if no
backup of the current boot configuration exists, always take one before
manipulating it.

	Be accessible: the Pi’s boot configuration lives on a FAT partition and is a
simple ASCII text file. This means it can be read and manipulated by almost
any platform (Windows, Mac OS, etc). Any backups of the configuration should
be as accessible. To that end we use simple PKZIP files to store backups of
boot configurations (in their original format), and place them on the same
FAT partition as the configuration.

	Be extensible: Almost all commands should default to human readable input
and output, but options should be provided for I/O in JSON, YAML, and a
shell-parseable format.

Links

	The code is licensed under the GPL v3 or above

	The source code can be obtained from GitHub, which also hosts the
bug tracker

	The documentation (which includes installation and quick start examples)
can be read on ReadTheDocs

	Packages can be downloaded from PyPI, although reading the installation
instructions will probably be more useful

Contents

	Installation
	Configuration

	User Manual
	diff

	get

	help

	list

	load

	remove

	rename

	save

	set

	show

	status

	Development
	Building the docs

	Test suite

	API
	pibootctl.exc

	pibootctl.files

	pibootctl.formatter

	pibootctl.info

	pibootctl.main

	pibootctl.parser

	pibootctl.setting

	pibootctl.settings

	pibootctl.store

	pibootctl.term

	pibootctl.userstr

	Changelog
	Release 0.5 (2020-09-09)

	Release 0.4 (2020-03-31)

	Release 0.3 (2020-03-27)

	Release 0.2 (2020-03-26)

	Release 0.1.1 (2020-03-13)

	Release 0.1 (2020-03-13)

	License

Indexes

	Index

	Search Page

Installation

If your distribution provides pibootctl then you should either find the utility
is installed by default, or it should be installable via your package manager.
For example:

$ sudo apt install pibootctl

It is strongly recommended to use a provided package rather than installing
from PyPI as this will include configuration specific to your distribution. The
utility can be removed via the usual mechanism for your package manager. For
instance:

$ sudo apt purge pibootctl

Configuration

pibootctl looks for its configuration in three locations:

	/lib/pibootctl/pibootctl.conf

	/etc/pibootctl.conf

	~/.config/pibootctl.conf

The last location is only intended for use by people developing pibootctl; for
the vast majority of users the configuration should be provided by their
distribution in one of the first two locations.

The configuration file is a straight-forward INI-style containing a single
section titled “defaults”. A typical configuration file might look like this:

pibootctl.conf

[defaults]
boot_path = /boot
store_path = pibootctl
package_name = pibootctl
comment_lines = on
backup = on

The configuration specifies several settings, but the most important are:

	boot_path

	The mount-point of the boot partition (defaults to /boot).

	store_path

	The path under which to store saved boot configurations, relative to
boot_path (defaults to pibootctl).

	config_root

	The “root” configuration file which is read first, relative to
boot_path (defaults to config.txt). This is also the primary
file that gets re-written when settings are changed.

	mutable_files

	The set of files within a configuration that may be modified by the
utility (defaults to config.txt). List multiple files on separate
lines. Currently, this must include config.txt.

	comment_lines

	If this is on, when lines in configuration files are no longer required,
they will be commented out with a “#” prefix instead of being deleted.
Defaults to off.

Note that, regardless of this setting, the utility will always search for
commented lines to uncomment before writing new ones.

	reboot_required

	The file which should be created in the event that the active boot
configuration is changed.

	reboot_required_pkgs

	The file to which the value of package_name should be appended in the
event that the active boot configuration is changed.

	package_name

	The name of the package which contains the utility. Used by
reboot_required_pkgs.

	backup

	If this is on (the default), any attempt to change the active boot
configuration will automatically create a backup of that configuration if
one does not already exist.

Line comments can be included in the configuration file with a # prefix.
Another example configuration, typical for Ubuntu on the Raspberry Pi, is shown
below:

pibootctl.conf

[defaults]
boot_path = /boot
store_path = pibootctl
mutable_files =
 config.txt
 syscfg.txt

reboot_required = /var/run/reboot-required
reboot_required_pkgs = /var/run/reboot-required.pkgs
package_name = pibootctl
backup = on

User Manual

The pibootctl utility defines several commands which can be used to
query and manipulate the boot configuration of the Raspberry Pi:

	diff

	Display the differences between the specified boot configuration and the
current one, or another specified configuration.

	get

	Retrieve the value of specified setting(s).

	help

	The default command, which describes the specified command or configuration
setting.

	list

	List the stored boot configurations.

	load

	Restore the named boot configuration to be used at the next boot.

	remove

	Delete the specified boot configuration.

	rename

	Rename the specified boot configuration.

	save

	Save the current boot configuration to the specified name.

	set

	Modify or reset the specified configuration setting(s).

	show

	Show the specified stored configuration.

	status

	Output the current boot configuration; by default this only prints modified
settings.

Typically, the status command is the first used, to determine the
current boot configuration:

$ pibootctl status
+------------------------+-------+
| Name | Value |
|------------------------+-------|
i2c.enabled	on
spi.enabled	on
video.overscan.enabled	off
+------------------------+-------+

After which the save command might be used to take a backup of the
configuration before editing it with the set command:

$ sudo pibootctl save default
$ sudo pibootctl set camera.enabled=on gpu.mem=128
$ sudo pibootctl save cam

Note

Note that commands which modify the content of the boot partition (e.g.
save and set) are executed with sudo as root
privileges are typically required.

The configuration of pibootctl itself dictates where the stored
configurations are placed on disk. By default this is under a “pibootctl”
directory on the boot partition, but this can be changed in the
pibootctl configuration. The application attempts to read its
configuration from the following locations on startup:

	/lib/pibootctl/pibootctl.conf

	/etc/pibootctl.conf

	$XDG_CONFIG_HOME/pibootctl.conf

The final location is only intended for developers working on
pibootctl itself. The others should be used by packages providing
pibootctl on your chosen OS.

Stored boot configurations are simply PKZIP files containing the files that
make up the boot configuration (sometimes this is just the config.txt
file, and sometimes other files may be included).

Note

In the event that your system is unable to boot (e.g. because of
mis-configuration), you can restore a stored boot configuration simply by
unzipping the stored configuration back into the root of the boot
partition.

In other words, you can simply place your Pi’s SD card in a Windows or MAC
OS X computer which should automatically mount the boot partition (which is
the only partition that these OS’ will understand on the card), find the
“pibootctl” folder and under there you should see all your stored
configurations as .zip files. Unzip one of these into the folder above
“pibootctl”, overwriting files as necessary and you have restored your boot
configuration.

The diff command can be used to discover the differences between
boot configurations:

$ pibootctl diff default
+------------------------+---------------+-------------+
| Name | <Current> | default |
|------------------------+---------------+-------------|
boot.firmware.filename	'start_x.elf'	'start.elf'
boot.firmware.fixup	'fixup_x.dat'	'fixup.dat'
camera.enabled	on	off
gpu.mem	128 (Mb)	64 (Mb)
+------------------------+---------------+-------------+

Note

Some settings indirectly affect others. Even though we did not explicitly
set boot.firmware.filename, setting camera.enabled affected its
default value.

The help command can be used to display the help screen for each
sub-command:

$ pibootctl help save
usage: pibootctl save [-h] [-f] name

Store the current boot configuration under a given name.

positional arguments:
 name The name to save the current boot configuration under; can
 include any characters legal in a filename

optional arguments:
 -h, --help show this help message and exit
 -f, --force Overwrite an existing configuration, if one exists

Additionally, help will accept setting names to display information
about the defaults and underlying commands each setting represents:

$ pibootctl help camera.enabled
 Name: camera.enabled
 Default: off
Command(s): start_x, start_debug, start_file, fixup_file

Enables loading the Pi camera module firmware. This implies that
start_x.elf (or start4x.elf) will be loaded as the GPU firmware rather than
the default start.elf (and the corresponding fixup file).

Note: with the camera firmware loaded, gpu.mem must be 64Mb or larger
(128Mb is recommended for most purposes; 256Mb may be required for complex
processing pipelines).

The list command can be used to display the content of the configuration
store, and load to restore previously saved configurations:

$ pibootctl list
+---------+--------+---------------------+
| Name | Active | Timestamp |
|---------+--------+---------------------|
| cam | x | 2020-03-11 21:29:56 |
| default | | 2020-03-11 21:29:13 |
+---------+--------+---------------------+
$ sudo pibootctl load default

diff

Synopsis

pibootctl diff [-h] [--json | --yaml | --shell] [left] right

Description

Display the settings that differ between two stored boot configurations, or
between one stored boot configuration and the current configuration.

Options

	
left

	The boot configuration to compare from, or the current configuration if
omitted.

	
right

	The boot configuration to compare against.

	
-h, --help

	Show a brief help page for the command.

	
--json

	Use JSON as the output format.

	
--yaml

	Use YAML as the output format.

	
--shell

	Use a tab-delimited output format suitable for the shell.

Usage

The diff command is used to display the differences between two boot
configurations; either two stored configurations (if two names are supplied on
the command line), or between the current boot configuration and a stored one
(if one name is supplied on the command line):

$ sudo pibootctl save default
$ sudo pibootctl set video.hdmi0.group=1 video.hdmi0.mode=4
$ pibootctl diff default
+-------------------+----------------+--------------------+
| Name | <Current> | default |
|-------------------+----------------+--------------------|
| video.hdmi0.group | 1 (CEA) | 0 (auto from EDID) |
| video.hdmi0.mode | 4 (720p @60Hz) | 0 (auto from EDID) |
+-------------------+----------------+--------------------+
$ sudo pibootctl save 720p
$ pibootctl diff default 720p
+-------------------+--------------------+----------------+
| Name | default | 720p |
|-------------------+--------------------+----------------|
| video.hdmi0.group | 0 (auto from EDID) | 1 (CEA) |
| video.hdmi0.mode | 0 (auto from EDID) | 4 (720p @60Hz) |
+-------------------+--------------------+----------------+

For developers wishing to build on top of pibootctl, options are provided to
produce the output in JSON (--json), YAML (--yaml), and
shell-friendly (--shell):

$ pibootctl diff --json default 720p
{"video.hdmi0.mode": {"right": 4, "left": 0}, "video.hdmi0.group":
{"right": 1, "left": 0}}

get

Synopsis

pibootctl get [-h] [--json | --yaml | --shell] setting [setting ...]

Description

Query the status of one or more boot configuration settings. If a single
setting is requested then just that value is output. If multiple values are
requested then both setting names and values are output. This applies whether
output is in the default, JSON, YAML, or shell-friendly styles.

Options

	
setting

	The name(s) of the setting(s) to query; if a single setting is given its
value alone is output, if multiple settings are queried the names and
values of the settings are output.

	
-h, --help

	Show a brief help page for the command.

	
--json

	Use JSON as the output format.

	
--yaml

	Use YAML as the output format.

	
--shell

	Use a var=value output format suitable for the shell.

Usage

The get command is primarily of use to those wishing to build
something on top of pibootctl; for end users wishing to query the
current boot configuration the status command is of more use. When given
a single setting to query the value of that setting is output on its own, in
whatever output style is selected:

$ pibootctl get video.overscan.enabled
on
$ pibootctl get --json video.overscan.enabled
true

When given multiple settings, names and values of those settings are both
output:

$ pibootctl get serial.enabled serial.baud serial.uart
+----------------+-------------------------+
| Name | Value |
|----------------+-------------------------|
serial.baud	115200
serial.enabled	on
serial.uart	0 (/dev/ttyAMA0; PL011)
+----------------+-------------------------+
$ pibootctl get --json serial.enabled serial.baud serial.uart
{"serial.enabled": true, "serial.baud": 115200, "serial.uart": 0}

Note that wildcards are not permitted with this command, unlike with the
status command.

help

Synopsis

pibootctl help [-h] [command | setting]

Description

With no arguments, displays the list of pibootctl commands. If a
command name is given, displays the description and options for the named
command. If a setting name is given, displays the description and default value
for that setting.

Options

	
-h, --help

	Show a brief help page for the command.

	
command

	The name of the command to output help for. The full command name must be
given; abbreviations are not accepted.

	
setting

	The name of the setting to output help for.

If the setting is not recognized, and contains an underscore (‘_’)
character, the utility will assume it is a config.txt configuration command
and attempt to output help for the setting that corresponds to it. If
multiple settings correspond, their names will be printed instead.

Usage

The help command is the default command, and thus will be invoked if
pibootctl is called with no other arguments. However it can also be
used to retrieve help for specific commands:

$ pibootctl help ls
usage: pibootctl list [-h] [--json | --yaml | --shell]

List all stored boot configurations.

optional arguments:
 -h, --help show this help message and exit
 --json Use JSON as the format
 --yaml Use YAML as the format
 --shell Use a var=value or tab-delimited format suitable for the
 shell

Alternatively, it can be used to describe settings:

$ pibootctl help boot.debug.enabled
 Name: boot.debug.enabled
 Default: off
Command(s): start_debug, start_file, fixup_file

Enables loading the debugging firmware. This implies that start_db.elf (or
start4db.elf) will be loaded as the GPU firmware rather than the default
start.elf (or start4.elf). Note that the debugging firmware incorporates
the camera firmware so this will implicitly switch camera.enabled on if it
is not already.

The debugging firmware performs considerably more logging than the default
firmware but at a performance cost, ergo it should only be used when
required.

Finally, if you are more familiar with the “classic” boot configuration
commands, it can be used to discover which pibootctl settings
correspond to those commands:

$ pibootctl help start_file
start_file is affected by the following settings:

camera.enabled
boot.debug.enabled
boot.firmware.filename

list

Synopsis

pibootctl list [-h] [--json | --yaml | --shell]

Description

List all stored boot configurations.

Options

	
-h, --help

	Show a brief help page for the command.

	
--json

	Use JSON as the output format.

	
--yaml

	Use YAML as the output format.

	
--shell

	Use a tab-delimited output format suitable for the shell.

Usage

The list command is used to display the content of the store of boot
configurations:

$ pibootctl list
+---------+--------+---------------------+
| Name | Active | Timestamp |
|---------+--------+---------------------|
720p	x	2020-03-10 11:33:24
default		2020-03-10 11:32:12
dpi		2020-02-01 15:46:48
gpi		2020-02-01 16:13:02
+---------+--------+---------------------+

If one (or more) of the stored configurations match the current boot
configuration, this will be indicated in the “Active” column. Note that
equivalence is based on a hash of all files in the configuration, not on the
resulting settings. Hence a simple edit like, for example, reversing the order
of two lines (which might not make any difference to the resulting settings)
would be sufficient to mark the configuration as “different”.

The “timestamp” of a stored configuration is the last modification date of that
configuration (calculated as the latest modification date of all files within
the configuration).

For developers wishing to build on top of pibootctl, options are provided to
produce the output in JSON (--json), YAML (--yaml), and
shell-friendly (--shell). These combine with all aforementioned
options as expected:

$ pibootctl list --json
[{"timestamp": "2020-02-01T15:46:48", "active": false, "name": "dpi"},
{"timestamp": "2020-03-10T11:32:12", "active": false, "name": "default"},
{"timestamp": "2020-02-01T16:13:02", "active": false, "name": "gpi"},
{"timestamp": "2020-03-10T11:33:24", "active": true, "name": "720p"}]

load

Synopsis

pibootctl load [-h] [--no-backup] name

Description

Overwrite the current boot configuration with a stored one.

Options

	
name

	The name of the boot configuration to restore

	
-h, --help

	Show a brief help page for the command.

	
--no-backup

	Don’t take an automatic backup of the current boot configuration if one
doesn’t exist

Usage

The load command is used to replace the current boot configuration
with one previously stored. Effectively this simply unpacks the PKZIP of the
stored boot configuration into the boot partition, overwriting existing files.

If the current boot configuration has not been stored (with the save
command), an automatically named backup will be saved first:

$ sudo pibootctl save default
$ sudo pibootctl set video.hdmi0.group=1 video.hdmi0.mode=4
$ sudo pibootctl load default
Backed up current configuration in backup-20200310-095646

This can be avoided with the --no-backup option.

Warning

The command is written to guarantee that no files will ever be left
half-written (files are unpacked to a temporary filename then atomically
moved into their final location overwriting any existing file).

However, the utility cannot guarantee that in the event of an error, the
configuration as a whole is not half-written (i.e. that one or more files
failed to unpack). In other words, in the event of failure you cannot
assume that the boot configuration is consistent.

remove

Synopsis

pibootctl remove [-h] [-f] name

Description

Remove a stored boot configuration.

Options

	
name

	The name of the boot configuration to remove.

	
-h, --help

	Show a brief help page for the command.

	
-f, --force

	Ignore errors if the named configuration does not exist.

Usage

The remove command is used to delete a stored boot configuration:

$ pibootctl list
+---------+--------+---------------------+
| Name | Active | Timestamp |
|---------+--------+---------------------|
720p	x	2020-03-10 11:33:24
default		2020-03-10 11:32:12
dpi		2020-02-01 15:46:48
gpi		2020-02-01 16:13:02
+---------+--------+---------------------+		
$ sudo pibootctl remove gpi		
$ pibootctl list		
+---------+--------+---------------------+		
Name	Active	Timestamp
---------+--------+---------------------		
720p	x	2020-03-10 11:33:24
default		2020-03-10 11:32:12
dpi		2020-02-01 15:46:48
+---------+--------+---------------------+

If, for scripting purposes, you wish to ignore the error in the case the
specified stored configuration does not exist, use the --force
option:

$ pibootctl rm foo
unknown configuration foo
$ pibootctl rm -f foo

rename

Synopsis

pibootctl rename [-h] [-f] name to

Description

Rename a stored boot configuration.

Options

	
name

	The name of the boot configuration to rename.

	
to

	The new name of the boot configuration.

	
-h, --help

	Show a brief help page for the command.

	
-f, --force

	Overwrite the target configuration, if it exists.

Usage

The rename command can be used to change the name of a stored boot
configuration:

$ pibootctl ls
+---------+--------+---------------------+
| Name | Active | Timestamp |
|---------+--------+---------------------|
720p	x	2020-03-10 11:33:24
default		2020-03-10 11:32:12
dpi		2020-02-01 15:46:48
+---------+--------+---------------------+		
$ sudo pibootctl rename default foo		
$ pibootctl ls		
+------+--------+---------------------+		
Name	Active	Timestamp
------+--------+---------------------		
720p	x	2020-03-10 11:33:24
dpi		2020-02-01 15:46:48
foo		2020-03-10 11:32:12
+------+--------+---------------------+

As with save, any characters permitted in a filename are permitted in
the new destination name.

If you wish to rename a configuration such that it overwrites an existing
configuration you will need to use the --force option:

$ sudo pibootctl load default
$ sudo pibootctl save foo
$ pibootctl ls
+---------+--------+---------------------+
| Name | Active | Timestamp |
|---------+--------+---------------------|
720p		2020-03-10 11:33:24
default	x	2020-03-10 11:32:12
dpi		2020-02-01 15:46:48
foo	x	2020-03-10 11:32:12
+---------+--------+---------------------+
$ sudo pibootctl mv foo default
[Errno 17] File exists: 'default.zip'
$ sudo pibootctl mv -f foo default

save

Synopsis

pibootctl save [-h] [-f] name

Description

Store the current boot configuration under a given name.

Options

	
name

	The name to save the current boot configuration under; can include any
characters legal in a filename

	
-h, --help

	Show a brief help page for the command.

	
-f, --force

	Overwrite an existing configuration, if one exists

Usage

The save command is used to take a backup of the current boot
configuration. In practice this creates a PKZIP of the files that make up
the boot configuration (config.txt et al.), and places it under the
configured directory on the boot partition (usually pibootctl):

$ ls /boot/pibootctl
$ sudo pibootctl save foo
$ ls /boot/pibootctl
foo.zip

Note that by default, you cannot overwrite saved configurations, but this can
be overridden with the --force option:

$ sudo pibootctl save foo
[Errno 17] File exists: 'foo.zip'
$ sudo pibootctl save -f foo

In the event that your system is rendered un-bootable, a boot configuration can
be easily restored by extracting the PKZIP of a saved configuration into the
boot partition (over-writing files as necessary). Alternatively you can use the
load command (if the system can boot). The list command can be
used to display all currently stored configurations.

set

Synopsis

pibootctl set [-h] [--no-backup] [--all | --this-model | --this-serial]
 [--json] [--yaml] [--shell]
 [name=[value] [name=[value] ...]]

Description

Change the value of one or more boot configuration settings. To reset the value
of a setting to its default, simply omit the new value.

Options

	
name=[value]

	Specify one or more settings to change on the command line; to reset a
setting to its default omit the value.

	
-h, --help

	Show a brief help page for the command.

	
--no-backup

	Don’t take an automatic backup of the current boot configuration if one
doesn’t exist.

	
--all

	Set the specified settings on all Pis this SD card is used with. This is
the default context.

	
--this-model

	Set the specified settings for this model of Pi only.

	
--this-serial

	Set the specified settings for this Pi’s serial number only.

	
--json

	Use JSON as the input format.

	
--yaml

	Use YAML as the input format.

	
--shell

	Use a var=value input format suitable for the shell.

Usage

The set command can be used at the command line to update the boot
configuration:

$ sudo pibootctl set video.overscan.enabled=off
Backed up current configuration in backup-20200309-230959

Note that, if no backup of the current boot configuration exists, a backup is
automatically taken (unless --no-backup is specified). Multiple
settings can be changed at once, and settings can be reset to their default
value by omitting the new value after the “=” sign:

$ sudo pibootctl set --no-backup serial.enabled=on serial.uart=

By default, settings are written into an “[all]” section in config.txt
meaning that they will apply everywhere the SD card is moved. However, you can
opt to make settings specific to the current model of Pi, or even the current
Pi’s serial number:

$ sudo pibootctl set --this-serial camera.enabled=on gpu.mem=128

In this case an appropriate section like “[0x123456789]” will be added and the
settings written under there.

For those wishing to build an interface on top of pibootctl, JSON, YAML, and
shell-friendly formats can also be used to feed new values to the
set command:

$ cat << EOF | sudo pibootctl set --json --no-backup
{"serial.enabled": true, "serial.uart": null}
EOF

show

Synopsis

pibootctl show [-h] [-a] [--json | --yaml | --shell] name [pattern]

Description

Display the specified stored boot configuration, or the sub-set of its settings
that match the specified pattern.

Options

	
name

	The name of the boot configuration to display.

	
pattern

	If specified, only displays settings with names that match the specified
pattern which may include shell globbing characters (e.g. *, ?, and simple
[classes])

	
-h, --help

	Show a brief help page for the command.

	
-a, --all

	Include all settings, regardless of modification, in the output; by
default, only settings which have been modified are included.

	
--json

	Use JSON as the output format.

	
--yaml

	Use YAML as the output format.

	
--shell

	Use a var=value output format suitable for the shell.

Usage

The show command is the equivalent of the status command for
stored boot configurations. By default it displays only the settings in the
specified configuration that have been modified from their default:

$ pibootctl show 720p
+------------------------+----------------+
| Name | Value |
|------------------------+----------------|
| video.hdmi0.group | 1 (CEA) |
| video.hdmi0.mode | 4 (720p @60Hz) |
+------------------------+----------------+

The full set of settings can be displayed (which is usually several pages long,
and thus will implicitly invoke the system’s pager) can be displayed with the
--all option:

$ pibootctl show 720p --all
+------------------------------+----------+--------------------------------+
| Name | Modified | Value |
|------------------------------+----------+--------------------------------|
...
video.hdmi0.enabled		auto
video.hdmi0.encoding		0 (auto; 1 for CEA, 2 for DMT)
video.hdmi0.flip		0 (none)
video.hdmi0.group	x	1 (CEA)
video.hdmi0.mode	x	4 (720p @60Hz)
video.hdmi0.mode.force		off
video.hdmi0.rotate		0
video.hdmi0.timings		[]
video.hdmi1.audio		auto
video.hdmi1.boost		5
...

Note that when --all is specified, a “Modified” column is included in
the output to indicate which settings are no longer default.

As with the status command, the list of settings can be further filtered
by specified a pattern with the command. The pattern can include any of the
common shell wildcard characters:

	* for any number of any character

	? for any single character

	[seq] for any character in seq

	[!seq] for any character not in seq

For example:

$ pibootctl show --all 720p i2c.*
+-------------+----------+--------+
| Name | Modified | Value |
|-------------+----------+--------|
| i2c.baud | | 100000 |
| i2c.enabled | | off |
+-------------+----------+--------+

For developers wishing to build on top of pibootctl, options are provided to
produce the output in JSON (--json), YAML (--yaml), and
shell-friendly (--shell). These combine with all aforementioned
options as expected:

$ pibootctl show --json --all 720p i2c.*
{"i2c.baud": 100000, "i2c.enabled": false}

status

Synopsis

pibootctl status [-h] [-a] [--json | --yaml | --shell] [pattern]

Description

Output the current value of modified boot time settings that match the
specified pattern (or all if no pattern is provided). The --all
option may be specified to output all boot settings regardless of modification
state.

Options

	
pattern

	If specified, only displays settings with names that match the specified
pattern which may include shell globbing characters (e.g. *, ?, and
simple [classes]).

	
-h, --help

	Show a brief help page for the command.

	
-a, --all

	Include all settings, regardless of modification, in the output. By
default, only settings which have been modified are included.

	
--json

	Use JSON as the output format.

	
--yaml

	Use YAML as the output format.

	
--shell

	Use a var=value format suitable for the shell.

Usage

By default, the status command only outputs boot time settings which
have been modified:

$ pibootctl status
+-------------+-------+
| Name | Value |
|-------------+-------|
| i2c.enabled | on |
| spi.enabled | on |
+-------------+-------+

The full set of settings (which is usually several pages long, and thus will
implicitly invoke the system’s pager) can be displayed with the
--all option:

$ pibootctl status --all
+------------------------------+----------+--------------------------+
| Name | Modified | Value |
|------------------------------+----------+--------------------------|
...
i2c.baud		100000
i2c.enabled	x	on
i2s.enabled		off
serial.baud		115200
serial.clock		48000000
serial.enabled		on
serial.uart		0 (/dev/ttyAMA0; PL011)
spi.enabled	x	on
video.cec.enabled		on
...

Note that when --all is specified, a “Modified” column is included in
the output to indicate which settings are no longer default.

The list of settings can be further filtered by specified a pattern with the
command. The pattern can include any of the common shell wildcard characters:

	* for any number of any character

	? for any single character

	[seq] for any character in seq

	[!seq] for any character not in seq

For example:

$ pibootctl status --all i2c.*
+-------------+----------+--------+
| Name | Modified | Value |
|-------------+----------+--------|
| i2c.baud | | 100000 |
| i2c.enabled | x | on |
+-------------+----------+--------+

For developers wishing to build on top of pibootctl, options are provided to
produce the output in JSON (--json), YAML (--yaml), and
shell-friendly (--shell). These combine with all aforementioned
options as expected:

$ pibootctl status --json --all i2c.*
{"i2c.baud": 100000, "i2c.enabled": true}

Development

If you wish to install a copy of pibootctl for development purposes, clone the
git repository and set up a configuration to use the cloned directory as the
source of the boot configuration:

$ sudo apt install python3-dev git virtualenvwrapper
$ cd
$ git clone https://github.com/waveform80/pibootctl.git
$ mkvirtualenv -p /usr/bin/python3 pibootctl
$ cd pibootctl
$ workon pibootctl
(pibootctl) $ make develop
(pibootctl) $ cat > ~/.config/pibootctl.conf << EOF
[defaults]
boot_path=.
store_path=store
reboot_required=
reboot_required_pkgs=
EOF

At this point you should be able to call the pibootctl utility,
and have it store the (empty) boot configuration as a PKZIP file under the
working directory:

$ pibootctl save foo
$ pibootctl ls
+------+--------+---------------------+
| Name | Active | Timestamp |
|------+--------+---------------------|
| foo | x | 2020-03-08 22:40:28 |
+------+--------+---------------------+

To work on the clone in future simply enter the directory and use the
workon command:

$ cd ~/pibootctl
$ workon pibootctl

To pull the latest changes from git into your clone and update your
installation:

$ cd ~/pibootctl
$ workon pibootctl
(pibootctl) $ git pull
(pibootctl) $ make develop

To remove your installation, destroy the sandbox and the clone:

(pibootctl) $ cd
(pibootctl) $ deactivate
$ rmvirtualenv pibootctl
$ rm -fr ~/pibootctl

Building the docs

If you wish to build the docs, you’ll need a few more dependencies. Inkscape is
used for conversion of SVGs to other formats, Graphviz and Gnuplot are used for
rendering certain charts, and TeX Live is required for building PDF output. The
following command should install all required dependencies:

$ sudo apt install texlive-xetex fonts-freefont-otf graphviz gnuplot inkscape

Once these are installed, you can use the “doc” target to build the
documentation:

$ cd ~/pibootctl
$ workon pibootctl
(pibootctl) $ make doc

The HTML output is written to build/html while the PDF output goes to
build/latex.

Test suite

If you wish to run the test suite, follow the instructions in
Development above and then make the “test” target within the sandbox:

$ cd ~/pibootctl
$ workon pibootctl
(pibootctl) $ make test

A tox configuration is also provided that will test the utility against all
supported Python versions:

$ cd ~/pibootctl
$ workon pibootctl
(pibootctl) $ pip install tox
...
(pibootctl) $ tox -p auto

Note

If developing under Ubuntu, the Dead Snakes PPA is particularly useful
for obtaining additional Python installations for testing.

API

pibootctl can be used both as a standalone application, and as
an API within Python. The primary class of interest when using pibootctl as an API is Store in the
pibootctl.store module, but pibootctl.main is useful for
providing an instance of this, constructed from the pibootctl configuration.

The API is split into several modules, documented in the following sections:

	pibootctl.exc

	pibootctl.files

	pibootctl.formatter

	pibootctl.info

	pibootctl.main

	pibootctl.parser

	pibootctl.setting

	pibootctl.settings

	pibootctl.store

	pibootctl.term

	pibootctl.userstr

pibootctl.exc

The pibootctl.exc module defines the various exceptions used in the
application:

	
exception pibootctl.exc.InvalidConfiguration(errors)

	Error raised when an updated configuration fails to validate. All
ValueError exceptions raised during validation are available from
the errors attribute which maps setting names to the
ValueError raised.

	
exception pibootctl.exc.IneffectiveConfiguration(diff)

	Error raised when an updated configuration has been overridden by something
in a file we’re not allowed to edit. All settings which have been
overridden are available from the diff attribute.

pibootctl.files

The pibootctl.files module contains the AtomicReplaceFile
context manager, used to “safely” replace files by writing to a temporary
file in the same directory, then moving the result over the target if no
exception occurs within the block. The result is that external processes either
see the “old” state of the file, or the “new” state, but nothing in between:

>>> from pathlib import Path
>>> from pibootctl.files import AtomicReplaceFile
>>> foo = Path('foo.txt')
>>> foo.write_text('foo')
>>> foo.read_text()
'foo'
>>> with AtomicReplaceFile(foo, encoding='ascii') as f:
... f.write('bar')
... raise Exception('something went wrong!')
...
3
Traceback (most recent call last):
 File "<stdin>", line 3, in <module>
Exception: something went wrong!
>>> foo.read_text()
'foo'

	
class pibootctl.files.AtomicReplaceFile(path, encoding=None)

	A context manager for atomically replacing a target file.

Uses tempfile.NamedTemporaryFile() to construct a temporary file in
the same directory as the target file. The associated file-like object is
returned as the context manager’s variable; you should write the content
you wish to this object.

When the context manager exits, if no exception has occurred, the temporary
file will be renamed over the target file atomically (and sensible
permissions will be set, i.e. 0666 & umask). If an exception occurs during
the context manager’s block, the temporary file will be deleted leaving the
original target file unaffected and the exception will be re-raised.

	Parameters

	
	path (str or pathlib.Path) – The full path and filename of the target file. This is expected to be
an absolute path.

	encoding (str) – If None (the default), the temporary file will be opened in
binary mode. Otherwise, this specifies the encoding to use with text
mode.

pibootctl.formatter

The pibootctl.formatter module contains some generic text formatting
routines, including the TableWrapper class (akin to
TextWrapper but specific to table output), TransMap
for partially formatting templates, and the render() function: a crude
markup renderer.

	
class pibootctl.formatter.TableWrapper(width=70, header_rows=1, footer_rows=0, cell_separator=' ', internal_line='-', internal_separator=' ', borders=('', '', '', ''), corners=('', '', '', ''), internal_borders=('', '', '', ''), align=None, format=None)

	Similar to TextWrapper, this class provides facilities
for wrapping text to a particular width, but with a focus on table-based
output.

The constructor takes numerous arguments, but typically you don’t need to
specify them all (or at all). A series of dictionaries are provided with
“common” configurations: pretty_table, curvy_table,
unicode_table, and curvy_unicode_table. For example:

>>> from pibootctl.formatter import *
>>> wrapper = TableWrapper(width=80, **curvy_table)
>>> data = [
... ('Name', 'Length', 'Position'),
... ('foo', 3, 1),
... ('bar', 3, 2),
... ('baz', 3, 3),
... ('quux', 4, 4)]
>>> print(wrapper.fill(data))
,------+--------+----------.
| Name | Length | Position |
|------+--------+----------|
| foo | 3 | 1 |
| bar | 3 | 2 |
| baz | 3 | 3 |
| quux | 4 | 4 |
`------+--------+----------'

The TableWrapper instance attributes (and keyword arguments to
the constructor) are as follows:

	
width

	(default 70) The maximum number of characters that the table can take
up horizontally. TableWrapper guarantees that no output line
will be longer than width characters.

	
header_rows

	(default 1) The number of rows at the top of the table that will be
separated from the following rows by a horizontal border
(internal_line).

	
footer_rows

	(default 0) The number of rows at the bottom of the table that will be
separated from the preceding rows by a horizontal border
(internal_line).

	
cell_separator

	(default ' ') The string used to separate columns of cells.

	
internal_line

	(default '-') The string used to draw horizontal lines inside the
table for header_rows and footer_rows.

	
internal_separator

	(default ' ') The string used within runs of internal_line
to separate columns.

	
borders

	(default ('', '', '', '')) A 4-tuple of strings which specify the
characters used to create the left, top, right, and bottom borders of
the table respectively.

	
corners

	(default ('', '', '', '')) A 4-tuple of strings which specify the
characters used for the top-left, top-right, bottom-right, and
bottom-left corners of the table respectively.

	
internal_borders

	(default ('', '', '', '')) A 4-tuple of strings which specify the
characters used to interrupt runs of the borders characters
to draw row and column separators. Like borders these are the
left, top, right, and bottom characters respectively.

	
align

	A callable accepting three parameters: 0-based row index, 0-based
column index, and the cell data. The callable must return a character
indicating the intended alignment of data within the cell. “<” for
left justification, “^” for centered alignment, and “>” for right
justification (as in str.format()). The default is to left align
everything.

	
format

	A callable accepting three parameters: 0-based row index, 0-based
column index, and the cell data. The callable must return the desired
string representation of the cell data. The default simply calls
str on everything.

TableWrapper also provides similar public methods to
TextWrapper:

	
wrap(data)

	Wraps the table data returning a list of output lines without final
newlines. data must be a sequence of row tuples, each of which is
assumed to be the same length.

If the current width does not permit at least a single
character per column (after taking account of the width of borders,
internal separators, etc.) then ValueError will be raised.

	
fill(data)

	Wraps the table data returning a string containing the wrapped
output.

	
pibootctl.formatter.pretty_table

	Uses simple ASCII characters to produce a typical “box-like” table
appearance:

>>> from pibootctl.formatter import *
>>> wrapper = TableWrapper(width=80, **pretty_table)
>>> data = [
... ('Name', 'Length', 'Position'),
... ('foo', 3, 1),
... ('bar', 3, 2),
... ('baz', 3, 3),
... ('quux', 4, 4)]
>>> print(wrapper.fill(data))
+------+--------+----------+
| Name | Length | Position |
|------+--------+----------|
| foo | 3 | 1 |
| bar | 3 | 2 |
| baz | 3 | 3 |
| quux | 4 | 4 |
+------+--------+----------+

	
pibootctl.formatter.curvy_table

	Uses simple ASCII characters to produce a “round-edged” table appearance:

>>> from pibootctl.formatter import *
>>> wrapper = TableWrapper(width=80, **curvy_table)
>>> data = [
... ('Name', 'Length', 'Position'),
... ('foo', 3, 1),
... ('bar', 3, 2),
... ('baz', 3, 3),
... ('quux', 4, 4)]
>>> print(wrapper.fill(data))
,------+--------+----------.
| Name | Length | Position |
|------+--------+----------|
| foo | 3 | 1 |
| bar | 3 | 2 |
| baz | 3 | 3 |
| quux | 4 | 4 |
`------+--------+----------'

	
pibootctl.formatter.unicode_table

	Uses unicode box-drawing characters to produce a typical “box-like” table
appearance:

>>> from pibootctl.formatter import *
>>> wrapper = TableWrapper(width=80, **unicode_table)
>>> data = [
... ('Name', 'Length', 'Position'),
... ('foo', 3, 1),
... ('bar', 3, 2),
... ('baz', 3, 3),
... ('quux', 4, 4)]
>>> print(wrapper.fill(data))
┌──────┬────────┬──────────┐
│ Name │ Length │ Position │
├──────┼────────┼──────────┤
│ foo │ 3 │ 1 │
│ bar │ 3 │ 2 │
│ baz │ 3 │ 3 │
│ quux │ 4 │ 4 │
└──────┴────────┴──────────┘

	
pibootctl.formatter.curvy_unicode_table

	Uses unicode box-drawing characters to produce a “round-edged” table
appearance:

>>> from pibootctl.formatter import *
>>> wrapper = TableWrapper(width=80, **curvy_unicode_table)
>>> data = [
... ('Name', 'Length', 'Position'),
... ('foo', 3, 1),
... ('bar', 3, 2),
... ('baz', 3, 3),
... ('quux', 4, 4)]
>>> print(wrapper.fill(data))
╭──────┬────────┬──────────╮
│ Name │ Length │ Position │
├──────┼────────┼──────────┤
│ foo │ 3 │ 1 │
│ bar │ 3 │ 2 │
│ baz │ 3 │ 3 │
│ quux │ 4 │ 4 │
╰──────┴────────┴──────────╯

	
class pibootctl.formatter.TransMap(**kw)

	Used with str.format_map() to substitute only a subset of values
in a given template, passing the rest through for later processing. For
example:

>>> '{foo}{bar}'.format_map(TransMap(foo=1))
'1{bar}'
>>> '{foo:02d}{bar:02d}{baz:02d}'.format_map(TransMap(foo=1, baz=3))
'01{bar:02d}03'

Note

One exception is that the !a conversion is not handled correctly.
This is erroneously converted to !r. Unfortunately there’s no
solution to this; it’s a side-effect of the means by which the !a
conversion is performed.

	
class pibootctl.formatter.FormatDict(data, key_title='Key', value_title='Value', sort_key=None)

	Used to format data, a dict, in a format acceptable as input to
the render() function. The key_title and value_title strings
provide the cells for the single header row.

This class is intended to be used within a string for str.format().
For example:

>>> from pibootctl.formatter import FormatDict
>>> d = {'foo': 100, 'bar': 200}
>>> print('An example table:\n\n{s}'.format(s=FormatDict(d)))
An example table:

Key	Value
foo	100
bar	200

The format specification in the format string can be used to request
different kinds of output, for instance:

>>> f = FormatDict({'foo': 100, 'bar': 200})
>>> print('An example list:\n\n{f:list}'.format(f=f))
An example list:

* foo = 100
* bar = 200
>>> print('An example reference list:\n\n{f:refs}'.format(f=f))
An example reference list:

[foo]: 100
[bar]: 200

The default format specification is “table”, naturally.

If the values are tuples that should be expanded into multiple columns,
set value_title to a tuple with the corresponding column titles:

>>> from pibootctl.formatter import FormatDict
>>> d = {'foo': (1, 100), 'bar': (2, 200)}
>>> print('An example table:\n\n{s}'.format(s=FormatDict(d,
... value_title=('col1', 'col2'))))
An example table:

Key	col1	col2
foo	1	100
bar	2	200

Tuple values are only supported for table output.

Note

In Python versions before 3.7, you may need to use
collections.OrderedDict to ensure output of the elements of
data in a particular order. Alternatively, you may specify a
sort_key value which will be applied to the key values of the dict to
sort them prior to output.

	
pibootctl.formatter.render(text, width=70, list_space=False, table_style=None)

	A crude renderer for a crude markup language intended for formatting
documentation for the console.

The markup recognized by this routine is as follows:

* Paragraphs must be separated by at least one blank line. They will be
 wrapped to *width*.

* Items in bulleted lists must start with an asterisk. No list nesting
 is permitted, but items may span several lines (without blank lines
 between them). Items will be wrapped to *width* and indented
 appropriately.

* Lines beginning and ending with a pipe character are assumed to be
 table rows. Pipe characters also delimit columns within the row. The
 first row is assumed to be a header row and will be separated from
 the rest.

An example table is shown below:

Command	Description
cd	changes the current directory
ls	lists the content of a directory
cp	copies files
mv	renames files
rm	removes files

pibootctl.info

The pibootctl.info module contains some simple routines for determining
information about the Pi that the application is running on.

	
pibootctl.info.get_board_revision()

	Return the Pi’s board revision as an unsigned 32-bit integer number. This
is the same number as reported under “Revision” in /proc/cpuinfo.

	
pibootctl.info.get_board_serial()

	Return the Pi’s serial number as an unsigned 64-bit integer number. This
can also be queried as “Serial” under /proc/cpuinfo.

	
pibootctl.info.get_board_type()

	Return a string indicating the overall model of the Pi, e.g. “pi0w”, “pi2”,
or “pi3+”. This is derived from the result of get_board_revision()
according to the Pi’s revision codes table.

	
pibootctl.info.get_board_types()

	Return a set of strings used for matching the model of Pi against
configuration sections according to the conditional filters table.

	
pibootctl.info.get_board_mem()

	Return the amount of memory (in megabytes) present on the Pi, according to
the model returned by get_board_revision().

pibootctl.main

The pibootctl.main module defines the Application class, and an
instance of this called main. Instances of Application are
callable and thus main is the entry-point for the pibootctl script.

From an API perspective, this module is primarily useful for providing an
instance of the Store class:

from pibootctl.main import main
from pibootctl.store import Store, Current, Default

store = main.store
store[Current] = store['foo']

	
pibootctl.main.main

	The instance of Application which is the entry-point for the
pibootctl script.

	
class pibootctl.main.Application

	An instance of this class (main) is the entry point for the
application. The instance is callable, accepting the command line arguments
as its single (optional) argument. The arguments will be derived from
sys.argv if not provided:

>>> from pibootctl.main import main
>>> try:
... main(['-h'])
... except SystemExit:
... pass
usage: [-h] [--version]
{help,?,status,dump,get,set,save,load,diff,show,cat,list,ls,remove,rm,rename,mv}
...

Warning

Calling main will raise SystemExit in several cases
(usually when requesting help output). It will also replace the system
exception hook (sys.excepthook()).

This is intended and by design. If you wish to use pibootctl as an API, you are better off investigating the
Store class, or treating pibootctl as a self-contained script and calling it with
subprocess.

	
backup_if_needed()

	Tests whether the active boot configuration is also present in the
store (by checking for the calculated hash). If it isn’t, constructs
a unique filename (backup-<timestamp>) and saves a copy of the active
boot configuration under it.

	
do_diff()

	Implementation of the diff command.

	
do_get()

	Implementation of the get command.

	
do_help()

	Implementation of the help command.

	
do_list()

	Implementation of the list command.

	
do_load()

	Implementation of the load command.

	
do_remove()

	Implementation of the remove command.

	
do_rename()

	Implementation of the rename command.

	
do_save()

	Implementation of the save command.

	
do_set()

	Implementation of the set command.

	
do_show()

	Implementation of the show command.

	
do_status()

	Implementation of the status command.

	
static invalid_config(*exc)

	Generates the error message for unhandled
InvalidConfiguration exceptions. These are caused
when a configuration fails to validate, and have an
errors attribute listing
all the exceptions that occurred during validation.

	
mark_reboot_required()

	Writes the necessary files to indicate that the system requires a
reboot.

	
static overridden_config(*exc)

	Generates the error message for unhandled
IneffectiveConfiguration exceptions. These are
caused when a boot configuration is split across multiple files; the
application is permitted to modify a file before the final one, but a
later file overrides a value the application has tried to set in the
file it is permitted to modify.

	
static permission_error(*exc)

	Generates the error message for unhandled PermissionError
exceptions. As these are very likely to be caused by non-root
execution, this is customzied to warn about this in the event that the
effective UID is not 0.

	
commands

	A dictionary mapping command names to their sub-parser.

	
config

	Returns the script’s configuration as derived from the files in the
three pre-defined locations (see pibootctl for more
information). Returns a Namespace containing the
parsed configuration.

	
parser

	The parser for all the sub-commands that the script accepts. The
parser’s defaults are derived from the configuration obtained from
config. Returns the newly constructed argument parser.

	
store

	The Store containing the current and stored
boot configurations.

pibootctl.parser

The pibootctl.parser module provides the BootParser class for
parsing the boot configuration of the Raspberry Pi.

The output of this class consists of derivatives of BootLine
(BootSection, BootCommand, etc.) and BootFile
instances.

	
class pibootctl.parser.BootParser(path)

	Parser for the files used to configure the Raspberry Pi’s bootloader.

The path specifies the container of all files that make up the
configuration. It be one of:

	a str or a Path in which case the path
specified must be a directory

	a ZipFile

	a dict mapping filenames to BootFile instances;
effectively the output of files after parsing

	
add(filename, encoding=None, errors=None)

	Adds the auxilliary filename under path to the configuration.
This is used to update the hash and files of the parsed
configuration to include files which are referenced by the boot
configuration but aren’t themselves configuration files (e.g. EDID
data, and the kernel cmdline.txt).

If specified, encoding and errors are as for open(). If
encoding is None, the data is assumed to be binary and the
method will return the content of the file as a bytes string.
Otherwise, the content of the file is assumed to be text and will be
returned as a list of str.

	
parse(filename='config.txt')

	Parse the boot configuration on path. The optional filename
specifies the “root” of the configuration, and defaults to
config.txt.

If parsing is successful, this will update the files,
hash, timestamp, and config attributes.

	
config

	The parsed configuration; a sequence of BootLine instances (or
derivatives of BootLine), after parse() has been
successfully called.

	
files

	The content of all parsed files; a mapping of filename to
BootFile objects.

	
hash

	After parse() is successfully called, this is the SHA1 hash of
the complete configuration in parsed order (i.e. starting at
“config.txt” and proceeding through all included files).

	
path

	The path under which all configuration files can be found. This may be
a Path instance, or a ZipFile, or a
dict.

	
timestamp

	The latest modified timestamp on all files that were read as a result
of calling parse().

	
class pibootctl.parser.BootLine(filename, linenum, conditions, comment=None)

	Represents a line in a boot configuration. This is effectively an abstract
base class and should never appear in output itself. Provides four
attributes:

	
filename

	A str indicating the path (relative to the configuration’s
root) of the file containing the line.

	
linenum

	The 1-based line number of the line.

	
conditions

	A BootConditions specifying the filters in effect for this
configuration line.

	
comment

	Any comment that appears after other content on the line, or
None if no comment was present

	
class pibootctl.parser.BootSection(filename, linenum, conditions, section, comment=None)

	A derivative of BootLine for [conditional sections] in a boot
configuration. Adds a single attribute:

	
section

	The criteria of the section (everything between the square brackets).

Note

The conditions for a BootSection instance includes
the filters defined by that section.

	
class pibootctl.parser.BootCommand(filename, linenum, conditions, command, params, hdmi=None, comment=None)

	A derivative of BootLine which represents a command in a boot
configuration, e.g. “disable_overscan=1”. Adds several attributes:

	
command

	The title of the command; characters before the first “=” in the line.

	
params

	The value of the command; characters after the first “=” in the line.
As a special case, the “initramfs” command has two values and thus if
command is “initramfs” then this attribute will be a 2-tuple.

	
hdmi

	The HDMI display that the command applies to. This is usually
None unless the command has an explicit hdmi suffix (“:”
separated after the command title but before the “=”), or the
command appears in an [HDMI:1] section.

	
class pibootctl.parser.BootInclude(filename, linenum, conditions, include, comment=None)

	A derivative of BootLine representing an “include” command in a
boot configuration. Adds a single attribute:

	
include

	The name of the file to be included.

	
class pibootctl.parser.BootFile

	Represents a file in a boot configuration.

	
filename

	A str representing the file’s path relative to the boot
configuration’s container (whatever that may be: a path, a zip archive,
etc.)

	
timestamp

	A datetime containing the last modification
timestamp of the file.

Note

This is rounded down to a 2-second precision as that is all
that PKZIP archives support.

	
content

	A bytes string containing the complete content of the file.

	
encoding

	None if the file is a binary file. Otherwise, specifies the
name of the character encoding to be used when reading the file.

	
errors

	None if the file is a binary file. Otherwise, specifies the
character replacement strategy to be used with erroneous characters
encountered when reading the file.

	
class pibootctl.parser.BootConditions

	Represents the set of conditional filters that apply to a given
BootLine. The class implements methods necessary to compare
instances as if they were sets.

For example:

>>> cond_all = BootConditions()
>>> cond_pi3 = BootConditions(pi='pi3')
>>> cond_pi3p = BootConditions(pi='pi3p')
>>> cond_serial = BootConditions(pi='pi3', serial=0x12345678)
>>> cond_all == cond_pi3
False
>>> cond_all >= cond_pi3
True
>>> cond_pi3 > cond_pi3p
True
>>> cond_serial < cond_pi3
True
>>> cond_serial < cond_pi3p
False

	
pi

	The model of pi that the section applies to. See conditional
filters for details of valid values. This represents sections
like [pi3].

	
hdmi

	The index of the HDMI port (0 or 1) that settings within this section
will apply to, if no index-suffix is provided by the setting itself.
This represents sections like [HDMI:0].

	
edid

	The EDID of the display that the section applies to. This represents
sections like [EDID=VSC-TD2220].

	
serial

	The serial number of the Pi that settings within this section will
apply to, stored as an int. This represents sections like
[0x12345678].

	
gpio

	The GPIO number and state that must be matched for settings in this
section to apply, stored as a (gpio, state) tuple. This represents
sections like [gpio2=0].

	
none

	If this is True then a [none] section has been encountered
and no settings apply.

	
suppress_count

	This is a “suppression count” used to track sections within included
files that are currently disabled (because the include occurred within
a section that itself is disabled).

	
evaluate(section)

	Calculates a new conditional state (based upon the current conditional
state) from the specified section criteria. Returns a new
BootConditions instance.

	
generate(context=None)

	Given context, a BootConditions instance representing the
currently active conditional sections, this method yields the
conditional secitons required to set the conditions to this instance.
If context is not specified, it defaults to conditions equivalent
to [any], which is the default in the Pi bootloader.

For example:

>>> current = BootConditions(pi='pi2', gpio=(4, True))
>>> wanted = BootConditions()
>>> print('\n'.join(wanted.generate(current)))
[all]
>>> wanted = BootConditions(pi='pi4')
>>> print('\n'.join(wanted.generate(current)))
[all]
[pi4]
>>> current = BootConditions(pi='pi2')
>>> print('\n'.join(wanted.generate(current)))
[pi4]
>>> current = BootConditions(none=True)
>>> print('\n'.join(wanted.generate(current)))
[all]
[pi3]

Note

The yielded strings do not end with a line terminator.

	
suppress()

	If the current boot conditions are not enabled, returns a
new BootConditions instance with the suppression count
incremented by one. This is used during parsing to disable all
conditionals in suppressed includes.

	
enabled

	Returns True if parsed items are currently effective. If this
is False, parsed items are ignored.

pibootctl.setting

The pibootctl.setting module defines all the classes used to represent
boot configuration settings:

[image: _images/setting_hierarchy.svg]

The base of the hierarchy is Setting but this is effectively an
abstract class and it is rare that anyone will need to use it directly. Rather
you should derive from one of the concrete implementations below it like
OverlayParam, Command, or one of the type-specializations
like CommandBool, CommandInt, etc.

Note

For the sake of brevity, only the generic classes defined in
pibootctl.setting are documented here. There are also specialization
classes specific to individual settings defined (for cases of complex
inter-dependencies, e.g. how the Bluetooth enabled status affects the
default serial UART).

Developers are advised to familiarize themselves with the full range of
classes in this module before defining additional ones.

	
class pibootctl.setting.Setting(name, *, default=None, doc='')

	Represents a configuration setting.

Each setting has a name which uniquely identifies the setting, a
default value, and an optional doc string. The life-cycle of a typical
setting in the scenario where the active boot configuration is being
changed is:

	extract() the value of a setting from parsed configuration lines

	update() the value of a setting from user-provided values

	validate() a setting in the wider context of a configuration

	generate output() to represent the setting in a new config.txt

Optionally:

	hint may be queried to describe a value in human-readable terms

	
extract(config)

	Given a config which must be a sequence of
BootLine items, yields each line that
potentially affects the setting’s value (including those currently
disabled by conditionals), and the new value that the line produces (or
None indicating that the value is now, or is still, the default
state).

Note

This method is not influenced by conditionals that disable a
line. In this case the method must still yield the line and the
value it would produce (were it enabled). The caller will deal with
the fact the line is currently disabled (but needs to be aware of
such lines for the configuration mutator).

For this reason (and others) this method must not affect
value directly; the caller will handle mutating the value
when required.

	
output()

	Yields lines of configuration to represent the current state of the
setting (taking in account the context of other
Settings).

	
update(value)

	Given a value, returns it transformed to the setting’s native type
(typically an int or bool but can be whatever type is
appropriate).

The value may be a regular type (str, int,
None, etc.) as deserialized from one of the input formats (JSON
or YAML). Alternatively, it may be a
UserStr, indicating that the value is a
string given by the user on the command line and should be interpreted
by the setting accordingly.

Note

Note to implementers: the method must not affect value
directly; the caller will handle this.

	
validate()

	Validates the setting within the context of the other
Settings. Raises ValueError in the
event that the current value is invalid. May optionally use
ValueWarning to warn about dangerous or inappropriate
configurations.

	
default

	The default value of this setting. The default may be sensitive to the
wider context of Settings (i.e. the default
of one setting can change depending on the current value of other
settings).

	
doc

	A description of the setting, used as help-text on the command line.

	
hint

	Provides a human-readable interpretation of the state of the setting.
Used by the “dump” and “show” commands to provide translations of
default and current values.

Must return None if no explanation is available or necessary.
Otherwise, must return a str.

	
key

	Returns a tuple of strings which will be used to order the output of
output() in the generated configuration.

Note

The output of this property must be unique for each setting,
unless a setting delegates all its output to another setting.

	
lines

	Returns the BootLine items which (if enabled
by conditionals) affected the value of the setting, in the reverse
order they were encountered while parsing (so the first enabled item
holds the current value).

	
modified

	Returns True when the setting has been modified. Note that it
is not sufficient to simply compare value to default
as some defaults are context- or platform-specific.

	
name

	The name of the setting. This is a dot-delimited list of strings; note
that the individual components do not have to be valid identifiers. For
example, “boot.kernel.64bit”.

	
value

	Returns the current value of the setting (or the default if the
setting has not been modified).

	
class pibootctl.setting.Overlay(name, *, overlay, default=False, doc='')

	Represents a boolean setting that is “on” if the represented overlay is
present, and “off” otherwise.

	
overlay

	The name of the overlay this parameter affects.

	
class pibootctl.setting.OverlayParam(name, *, overlay='base', param, default=None, doc='')

	Represents a param to a device-tree overlay. Like Setting,
this is effectively an abstract base class to be derived from.

	
param

	The name of the parameter within the base overlay that this setting
represents.

	
class pibootctl.setting.OverlayParamInt(name, *, overlay='base', param, default=0, doc='', valid=None)

	Represents an integer parameter to a device-tree overlay.

The valid parameter may optionally provide a dictionary mapping valid
integer values for the command to string explanations, to be provided by
the basic hint implementation.

	
class pibootctl.setting.OverlayParamBool(name, *, overlay='base', param, default=False, doc='')

	Represents a boolean parameter to the base device-tree overlay.

	
class pibootctl.setting.Command(name, *, command=None, commands=None, default=None, doc='', index=None)

	Represents a string-valued configuration command or commmands (one
of these must be specified, but not both). If multiple commands are
represented, only the first will be generated by output() in this
base class.

This is also the base class for most simple-valued configuration commands
(integer, boolean, etc).

	
commands

	The configuration commands that this setting represents.

	
index

	The index of this setting for multi-valued settings (e.g. settings
which apply to HDMI outputs).

	
class pibootctl.setting.CommandInt(name, *, command=None, commands=None, default=0, doc='', index=0, valid=None)

	Represents an integer-valued configuration command or commands.

The valid parameter may optionally provide a dictionary mapping valid
integer values for the command to string explanations, to be provided by
the basic hint implementation.

	
class pibootctl.setting.CommandIntHex(name, *, command=None, commands=None, default=0, doc='', index=0, valid=None)

	An integer-valued configuration command or commands that are typically
represented in hexi-decimal (like memory addresses).

	
class pibootctl.setting.CommandBool(name, *, command=None, commands=None, default=False, doc='', index=0)

	Represents a boolean-valued configuration command or commands.

	
class pibootctl.setting.CommandBoolInv(name, *, command=None, commands=None, default=False, doc='', index=0)

	Represents a boolean-valued configuration command or commands with
inverted logic, e.g. video.overscan.enabled represents the
disable_overscan setting and therefore its value is always the opposite
of the actual written value.

	
class pibootctl.setting.CommandForceIgnore(name, *, force, ignore, doc='', index=0)

	Represents the tri-valued configuration values with force and ignore
commands, e.g. hdmi_force_hotplug and hdmi_ignore_hotplug.

For these cases, when both commands are “0” the setting is considered to
have the value None (which in most cases means “determine
automatically”). When the force command is “1”, the setting is
True and thus when the ignore command is “1”, the setting is
False. When both are “1” (a contradictory setting) the final
setting encountered takes precedence.

	
force

	The boolean command that forces this setting on.

	
ignore

	The boolean command that forces this setting off.

	
class pibootctl.setting.CommandMaskMaster(name, *, mask, command=None, commands=None, default=0, doc='', index=0, valid=None, dummies=())

	Represents an integer bit-mask setting as several settings. The “master”
setting is the only one that produces any output. It defines the suffixes
of its dummies (instances of CommandMaskDummy which parse the
same setting but produce no output of their own).

The mask specifies the integer bit-mask to be applied to the underlying
value for this setting. The right-shift will be calculated from this.
Single-bit masks will be represented as boolean values rather than
integers.

	
class pibootctl.setting.CommandMaskDummy(name, *, mask, command=None, commands=None, default=0, doc='', index=0, valid=None, dummies=())

	Represents portions of integer bit-masks which are subordinate to a
CommandMaskMaster setting.

	
class pibootctl.setting.CommandFilename(name, *, command=None, commands=None, default=None, doc='', index=None)

	Represents settings that contain a filename affected by the os_prefix
command. The filename returns the full filename incorporating the
value of “boot.prefix” (if set), and hint outputs a
suitable message including the full path.

	
filename

	The full filename represented by the value, after concatenating it with
the value of “boot.prefix”.

	
class pibootctl.setting.CommandIncludedFile(name, *, command=None, commands=None, default=None, doc='', index=None)

	Represents settings that reference a file which should be included in any
stored boot configuration.

	
exception pibootctl.setting.ValueWarning

	Warning class used by Setting.validate() to warn about dangerous
or inappropriate configurations.

pibootctl.settings

The pibootctl.settings module defines the template of all settings
stored by the pibootctl.store.Settings class. Users of the API never
have any need for this module, but developers wishing to extend the set of
settings will need to modify the SETTINGS set.

	
pibootctl.settings.SETTINGS

	A dict mapping setting names to pibootctl.setting.Setting
instances which represents the complete set of settings that the
application handles.

pibootctl.store

The pibootctl.store module defines classes which control a store of
Raspberry Pi boot configurations, or the active boot configuration.

The main class of interest is Store. From an instance of this, one can
access derivatives of BootConfiguration for the purposes of
manipulating the store of configurations, or the active boot configuration
itself. Each BootConfiguration contains an instance of
Settings which maps setting names to
Setting instances.

See pibootctl.main for information on obtaining an instance of
Store.

	
pibootctl.store.Current

	The key of the active boot configuration in instances of Store.

	
pibootctl.store.Default

	The key of the default (empty) boot configuration in instances of
Store.

	
class pibootctl.store.Store(boot_path, store_path, config_root='config.txt', mutable_files=frozenset({'config.txt'}), comment_lines=False)

	A mapping representing all boot configurations (current, default, and
stored).

Acts as a mapping keyed by the name of the stored configuration, or the
special values Current for the current boot configuration, or
Default for the default (empty) configuration. The values of the
mapping are derivatives of BootConfiguration which provide the
parsed Settings, along with some other attributes.

The mapping is mutable and this can be used to manipulate stored boot
configurations. For instance, to store the current boot configuration under
the name “foo”:

>>> store = Store('/boot', 'pibootctl')
>>> store["foo"] = store[Current]

Setting the item with the key Current overwrites the current boot
configuration:

>>> store[Current] = store["serial"]

Note that items retrieved from the store are effectively immutable;
modifying them (even internally) does not modify the content of the
store. To modify the content of the store, you must request a
mutable() copy of a configuration, modify it, and
assign it back:

>>> foo = store["foo"].mutable()
>>> foo.update({"serial.enabled": True})
>>> store["serial"] = foo

The same applies to the current boot configuration item:

>>> current = store[Current].mutable()
>>> current.update({"camera.enabled": True, "gpu.mem": 128})
>>> store[Current] = current

Items can be deleted to remove them from the store, with the obvious
exception of the items with the keys Current and Default
which cannot be removed (attempting to do so will raise a KeyError).
Furthermore, the item with the key Default cannot be modified
either.

	Parameters

	
	boot_path (str) – The path on which the boot partition is mounted.

	store_path (str) – The path (relative to boot_path) under which stored configurations
will be saved.

	config_root (str) – The filename of the “root” of the configuration, i.e. the first file
read by the parser, and the file in which certain commands (e.g.
start_x) must be placed. Currently, this should always be
“config.txt”, the default.

	mutable_files (set) – The set of filenames which MutableConfiguration instances are
permitted to change. By default this is just “config.txt”.

	comment_lines (bool) – If True, then MutableConfiguration will comment out
lines no longer required with a # prefix. When False (the
default), such lines will be deleted instead. When adding lines,
regardless of this setting, the utility will search for, and uncomment,
commented out lines which match the required output.

	
active

	Returns the key of the active configuration, if any. If no
configuration is currently active, returns None.

	
class pibootctl.store.BootConfiguration(path, config_root='config.txt', mutable_files=frozenset({'config.txt'}), comment_lines=False)

	Represents a boot configuration, as parsed from config_root (default
“config.txt”) on the boot partition (presumably mounted at path, a
Path instance).

	
mutable()

	Return a MutableConfiguration based on the parsed content of
this configuration.

Note that mutable configurations are not backed by any files on disk,
so nothing is actually re-written until the updated mutable
configuration is assigned back to something in the Store.

	
config_root

	The root file of the boot configuration. This is currently always
“config.txt”.

	
files

	A mapping of filenames to BootFile instances
representing all the files that make up the boot configuration.

	
hash

	The SHA1 hash that identifies the boot configuration. This is obtained
by hashing the files of the boot configuration in parsing order.

	
path

	The path (or archive or entity) containing all the files that make up
the boot configuration.

	
settings

	A Settings instance containing all the settings extracted from
the boot configuration.

	
timestamp

	The last modified timestamp of the boot configuration, as a
datetime.

	
class pibootctl.store.StoredConfiguration(path, config_root='config.txt', mutable_files=frozenset({'config.txt'}), comment_lines=False)

	Represents a boot configuration stored in a ZipFile
specified by path. The starting file of the configuration is given by
config_root. All other parameters are as in BootConfiguration.

	
class pibootctl.store.MutableConfiguration(path, config_root='config.txt', mutable_files=frozenset({'config.txt'}), comment_lines=False)

	Represents a changeable boot configuration.

Do not construct instances of this class directly; they are typically
constructed from a base BootConfiguration, by calling
mutable().

Mutable configurations can be changed with the update() method which
will also validate the new configuration, and check that the settings were
not overridden by later files. No link is maintained between the original
BootConfiguration and the mutable copy. This implies that nothing
is re-written on disk when the mutable configuration is updated. The
resulting configuration must be assigned back to something in the
Store in order to re-write disk files.

	
update(values, context)

	Given a mapping of setting names to new values, updates the values of
the corresponding settings in this configuration. If a value is
None, the setting is reset to its default value.

	
class pibootctl.store.Settings(items=None)

	Represents all settings in a boot configuration; acts like an ordered
mapping of names to Setting objects.

	
copy()

	Returns a distinct copy of the configuration that can be updated
without affecting the original.

	
diff(other)

	Returns a set of (self, other) setting tuples for all settings that
differ between self and other (another Settings instance).
If a particular setting is missing from either side, its entry will be
given as None.

	
filter(pattern)

	Returns a copy of the configuration which only contains settings with
names matching pattern, which may contain regular shell globbing
patterns.

	
modified()

	Returns a copy of the configuration which only contains modified
settings.

pibootctl.term

The pibootctl.term module contains various utilities for determining the
type of terminal the script is running under (term_is_dumb(),
term_is_utf8(), and term_size()), for directing terminal output
through the system’s pager(), and for constructing an overall
ErrorHandler for the script.

	
class pibootctl.term.ErrorHandler

	Global configurable application exception handler. For “basic” errors (I/O
errors, keyboard interrupt, etc.) just the error message is printed as
there’s generally no need to confuse the user with a complete stack trace
when it’s just a missing file. Other exceptions, however, are logged with
the usual full stack trace.

The configuration can be augmented with other exception classes that should
be handled specially by treating the instance as a dictionary mapping
exception classes to ErrorAction tuples (or any 2-tuple, which
will be converted to an ErrorAction).

For example:

>>> from pibootctl.term import ErrorAction, ErrorHandler
>>> import sys
>>> sys.excepthook = ErrorHandler()
>>> sys.excepthook[KeyboardInterrupt]
(None, 1)
>>> sys.excepthook[SystemExit]
(None, <function ErrorHandler.exc_value at 0x7f6178915e18>)
>>> sys.excepthook[ValueError] = (sys.excepthook.exc_message, 3)
>>> sys.excepthook[Exception] = ("An error occurred", 1)
>>> raise ValueError("foo is not an integer")
foo is not an integer

Note the lack of a traceback in the output; if the example were a script
it would also have exited with return code 3.

	
clear()

	Remove all pre-defined error handlers.

	
static exc_message(exc_type, exc_value, exc_tb)

	Extracts the message associated with the exception (by calling
str on the exception instance). The result is returned as a
one-element list containing the message.

	
static exc_value(exc_type, exc_value, exc_tb)

	Returns the first argument of the exception instance. In the case of
SystemExit this is the expected return code of the script.

	
static syntax_error(exc_type, exc_value, exc_tb)

	Returns the message associated with the exception, and an additional
line suggested the user try the --help option. This should be used
in response to exceptions indicating the user made an error in their
command line.

	
class pibootctl.term.ErrorAction(message, exitcode)

	Named tuple dictating the action to take in response to an unhandled
exception of the type it is associated with in ErrorHandler.
The message is an iterable of lines to be output as critical error
log messages, and exitcode is an integer to return as the exit code of
the process.

Either of these can also be functions which will be called with the
exception info (type, value, traceback) and will be expected to return
an iterable of lines (for message) or an integer (for exitcode).

	
pibootctl.term.term_is_dumb()

	Returns True if stdout is something other than a TTY (e.g. a file
redirection or a pipe).

	
pibootctl.term.term_is_utf8()

	Returns True if the code-set of the current locale is ‘UTF-8’.

	
pibootctl.term.term_size()

	Returns the size of the console as a (rows, cols) tuple.

	
pibootctl.term.pager(enable=None)

	Used as a context manager to redirect stdout to the system’s pager utility
(“pager”, “less”, or “more” are all attempted, in that order).

By default (when enable is None), stdout will only be redirected
if stdout is connected to a TTY. If enable is True stdout will
always be redirected, and likewise when enable is False the
function will do nothing.

For example, the following script should print “Hello, world!”, piping the
result through the system’s pager:

from pibootctl.term import pager
with pager():
 print("Hello, world!")

pibootctl.userstr

The pibootctl.userstr module provides the UserStr class which
represents unparsed user input on the command line.

The module also provides a variety of functions for converting input (either
from JSON, YAML, or other structured formats, or from unparsed
UserStr) into common types (to_bool(), to_int(),
to_str(), etc).

	
class pibootctl.userstr.UserStr

	Type used to represent a value expressed as a string on the command line.
In other words, any value bearing this type is a string representation of
some other type (possibly str, int, None, etc.)

Primarily used by various conversion routines (to_bool(),
to_str(), etc.) to determine whether a value is a string parsed from
some serialization format (like JSON or YAML) which should be treated as a
string literal.

Note

The blank UserStr is special in that it always represents
None in conversions.

	
pibootctl.userstr.to_bool(s)

	Converts the UserStr (or other type) s to a bool.
Various “typical” string representations of true and false are accepted
including “true”, “yes”, and “on”, along with their counter-parts “false”,
“no”, and “off”. Literal None passes through unchanged, and a blank
UserStr will convert to None.

	
pibootctl.userstr.to_int(s)

	Converts the UserStr (or other type) s to a int. As
with all UserStr conversions, blank string inputs are converted to
None, and literal None passes through unchanged. Otherwise,
decimal integers and hexi-decimal integers prefixed with “0x” are accepted.

	
pibootctl.userstr.to_float(s)

	Converts the UserStr (or other type) s to a float. As
with all UserStr conversions, blank string inputs are converted to
None, and literal None passes through unchanged. Otherwise,
typical floating point values (optionally prefixed with sign, optionally
suffixed with an exponent) are accepted.

	
pibootctl.userstr.to_str(s)

	Converts the UserStr (or other type) s to a str. Blank
UserStr are converted to None, and literal None
passes through unchanged. Everything else is simply passed to the
str constructor.

	
pibootctl.userstr.to_list(s, sep=', ')

	Converts the UserStr (or other type) s to a list based
on the separator character sep (which defaults to “,”). Blank
UserStr are converted to None, and literal None
passes through unchanged. Everything else is passed to the list
constructor. This ensures that the result is always a unique reference.

Changelog

Release 0.5 (2020-09-09)

	Rewrote the configuration setting code to always target config.txt
as several settings don’t work in included files (e.g. start_x).

	Added comment_lines configuration option to permit commenting out lines
instead of deleting them

	Enhanced the configuration setting code to search for and uncomment existing
lines in preference to writing new ones

	Added --this-model and --this-serial options to permit adding
settings in new conditional sections

Release 0.4 (2020-03-31)

	Handle unrecognized commands correctly in the “help” command

	Implemented loading settings with the --shell style

	Improved help output for reference lists

	Fixed all legal stuff (added copyright headers where required, re-licensed to
GPL 3+)

Release 0.3 (2020-03-27)

	Added full bash completion support

Release 0.2 (2020-03-26)

	The application now reports which lines overrode a setting when the
“ineffective setting” error occurs

	Added the max_framebuffers setting, and detection for the vc4-*-v3d overlays

	Fixed restoring the default configuration in which config.txt doesn’t exist
(i.e. when config.txt should be deleted or blanked; the prior version simply
left the old config.txt in place incorrectly)

	Various documentation fixes

Release 0.1.1 (2020-03-13)

	Fixed broken build on Bionic

Release 0.1 (2020-03-13)

	Initial release.

	Please note that as this is a pre-v1 release, API stability is not yet
guaranteed.

License

This file is part of pibootctl.

pibootctl is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.

pibootctl is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
pibootctl. If not, see <https://www.gnu.org/licenses/>.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pibootctl	

 	
 	
 pibootctl.exc	

 	
 	
 pibootctl.files	

 	
 	
 pibootctl.formatter	

 	
 	
 pibootctl.info	

 	
 	
 pibootctl.main	

 	
 	
 pibootctl.parser	

 	
 	
 pibootctl.setting	

 	
 	
 pibootctl.settings	

 	
 	
 pibootctl.store	

 	
 	
 pibootctl.term	

 	
 	
 pibootctl.userstr	

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

Symbols

 	
 	
 --all

 	pibootctl-set command line option

 	
 --json

 	pibootctl-diff command line option

 	pibootctl-get command line option

 	pibootctl-list command line option

 	pibootctl-set command line option

 	pibootctl-show command line option

 	pibootctl-status command line option

 	
 --no-backup

 	pibootctl-load command line option

 	pibootctl-set command line option

 	
 --shell

 	pibootctl-diff command line option

 	pibootctl-get command line option

 	pibootctl-list command line option

 	pibootctl-set command line option

 	pibootctl-show command line option

 	pibootctl-status command line option

 	
 --this-model

 	pibootctl-set command line option

 	
 --this-serial

 	pibootctl-set command line option

 	
 --yaml

 	pibootctl-diff command line option

 	pibootctl-get command line option

 	pibootctl-list command line option

 	pibootctl-set command line option

 	pibootctl-show command line option

 	pibootctl-status command line option

 	
 	
 -a, --all

 	pibootctl-show command line option

 	pibootctl-status command line option

 	
 -f, --force

 	pibootctl-remove command line option

 	pibootctl-rename command line option

 	pibootctl-save command line option

 	
 -h, --help

 	pibootctl-diff command line option

 	pibootctl-get command line option

 	pibootctl-help command line option

 	pibootctl-list command line option

 	pibootctl-load command line option

 	pibootctl-remove command line option

 	pibootctl-rename command line option

 	pibootctl-save command line option

 	pibootctl-set command line option

 	pibootctl-show command line option

 	pibootctl-status command line option

A

 	
 	active (pibootctl.store.Store attribute)

 	add() (pibootctl.parser.BootParser method)

 	
 	align (pibootctl.formatter.TableWrapper attribute)

 	Application (class in pibootctl.main)

 	AtomicReplaceFile (class in pibootctl.files)

B

 	
 	backup_if_needed() (pibootctl.main.Application method)

 	BootCommand (class in pibootctl.parser)

 	BootConditions (class in pibootctl.parser)

 	BootConfiguration (class in pibootctl.store)

 	BootFile (class in pibootctl.parser)

 	
 	BootInclude (class in pibootctl.parser)

 	BootLine (class in pibootctl.parser)

 	BootParser (class in pibootctl.parser)

 	BootSection (class in pibootctl.parser)

 	borders (pibootctl.formatter.TableWrapper attribute)

C

 	
 	cell_separator (pibootctl.formatter.TableWrapper attribute)

 	clear() (pibootctl.term.ErrorHandler method)

 	
 command

 	pibootctl-help command line option

 	Command (class in pibootctl.setting)

 	command (pibootctl.parser.BootCommand attribute)

 	CommandBool (class in pibootctl.setting)

 	CommandBoolInv (class in pibootctl.setting)

 	CommandFilename (class in pibootctl.setting)

 	CommandForceIgnore (class in pibootctl.setting)

 	CommandIncludedFile (class in pibootctl.setting)

 	CommandInt (class in pibootctl.setting)

 	CommandIntHex (class in pibootctl.setting)

 	CommandMaskDummy (class in pibootctl.setting)

 	
 	CommandMaskMaster (class in pibootctl.setting)

 	commands (pibootctl.main.Application attribute)

 	(pibootctl.setting.Command attribute)

 	comment (pibootctl.parser.BootLine attribute)

 	conditions (pibootctl.parser.BootLine attribute)

 	config (pibootctl.main.Application attribute)

 	(pibootctl.parser.BootParser attribute)

 	config_root (pibootctl.store.BootConfiguration attribute)

 	content (pibootctl.parser.BootFile attribute)

 	copy() (pibootctl.store.Settings method)

 	corners (pibootctl.formatter.TableWrapper attribute)

 	Current (in module pibootctl.store)

 	curvy_table (in module pibootctl.formatter)

 	curvy_unicode_table (in module pibootctl.formatter)

D

 	
 	Default (in module pibootctl.store)

 	default (pibootctl.setting.Setting attribute)

 	diff() (pibootctl.store.Settings method)

 	do_diff() (pibootctl.main.Application method)

 	do_get() (pibootctl.main.Application method)

 	do_help() (pibootctl.main.Application method)

 	do_list() (pibootctl.main.Application method)

 	
 	do_load() (pibootctl.main.Application method)

 	do_remove() (pibootctl.main.Application method)

 	do_rename() (pibootctl.main.Application method)

 	do_save() (pibootctl.main.Application method)

 	do_set() (pibootctl.main.Application method)

 	do_show() (pibootctl.main.Application method)

 	do_status() (pibootctl.main.Application method)

 	doc (pibootctl.setting.Setting attribute)

E

 	
 	edid (pibootctl.parser.BootConditions attribute)

 	enabled (pibootctl.parser.BootConditions attribute)

 	encoding (pibootctl.parser.BootFile attribute)

 	ErrorAction (class in pibootctl.term)

 	ErrorHandler (class in pibootctl.term)

 	
 	errors (pibootctl.parser.BootFile attribute)

 	evaluate() (pibootctl.parser.BootConditions method)

 	exc_message() (pibootctl.term.ErrorHandler static method)

 	exc_value() (pibootctl.term.ErrorHandler static method)

 	extract() (pibootctl.setting.Setting method)

F

 	
 	filename (pibootctl.parser.BootFile attribute)

 	(pibootctl.parser.BootLine attribute)

 	(pibootctl.setting.CommandFilename attribute)

 	files (pibootctl.parser.BootParser attribute)

 	(pibootctl.store.BootConfiguration attribute)

 	
 	fill() (pibootctl.formatter.TableWrapper method)

 	filter() (pibootctl.store.Settings method)

 	footer_rows (pibootctl.formatter.TableWrapper attribute)

 	force (pibootctl.setting.CommandForceIgnore attribute)

 	format (pibootctl.formatter.TableWrapper attribute)

 	FormatDict (class in pibootctl.formatter)

G

 	
 	generate() (pibootctl.parser.BootConditions method)

 	get_board_mem() (in module pibootctl.info)

 	get_board_revision() (in module pibootctl.info)

 	
 	get_board_serial() (in module pibootctl.info)

 	get_board_type() (in module pibootctl.info)

 	get_board_types() (in module pibootctl.info)

 	gpio (pibootctl.parser.BootConditions attribute)

H

 	
 	hash (pibootctl.parser.BootParser attribute)

 	(pibootctl.store.BootConfiguration attribute)

 	hdmi (pibootctl.parser.BootCommand attribute)

 	(pibootctl.parser.BootConditions attribute)

 	
 	header_rows (pibootctl.formatter.TableWrapper attribute)

 	hint (pibootctl.setting.Setting attribute)

I

 	
 	ignore (pibootctl.setting.CommandForceIgnore attribute)

 	include (pibootctl.parser.BootInclude attribute)

 	index (pibootctl.setting.Command attribute)

 	IneffectiveConfiguration

 	
 	internal_borders (pibootctl.formatter.TableWrapper attribute)

 	internal_line (pibootctl.formatter.TableWrapper attribute)

 	internal_separator (pibootctl.formatter.TableWrapper attribute)

 	invalid_config() (pibootctl.main.Application static method)

 	InvalidConfiguration

K

 	
 	key (pibootctl.setting.Setting attribute)

L

 	
 	
 left

 	pibootctl-diff command line option

 	
 	linenum (pibootctl.parser.BootLine attribute)

 	lines (pibootctl.setting.Setting attribute)

M

 	
 	main (in module pibootctl.main)

 	mark_reboot_required() (pibootctl.main.Application method)

 	modified (pibootctl.setting.Setting attribute)

 	
 	modified() (pibootctl.store.Settings method)

 	mutable() (pibootctl.store.BootConfiguration method)

 	MutableConfiguration (class in pibootctl.store)

N

 	
 	
 name

 	pibootctl-load command line option

 	pibootctl-remove command line option

 	pibootctl-rename command line option

 	pibootctl-save command line option

 	pibootctl-show command line option

 	
 	name (pibootctl.setting.Setting attribute)

 	
 name=[value]

 	pibootctl-set command line option

 	none (pibootctl.parser.BootConditions attribute)

O

 	
 	output() (pibootctl.setting.Setting method)

 	Overlay (class in pibootctl.setting)

 	overlay (pibootctl.setting.Overlay attribute)

 	
 	OverlayParam (class in pibootctl.setting)

 	OverlayParamBool (class in pibootctl.setting)

 	OverlayParamInt (class in pibootctl.setting)

 	overridden_config() (pibootctl.main.Application static method)

P

 	
 	pager() (in module pibootctl.term)

 	param (pibootctl.setting.OverlayParam attribute)

 	params (pibootctl.parser.BootCommand attribute)

 	parse() (pibootctl.parser.BootParser method)

 	parser (pibootctl.main.Application attribute)

 	path (pibootctl.parser.BootParser attribute)

 	(pibootctl.store.BootConfiguration attribute)

 	
 pattern

 	pibootctl-show command line option

 	pibootctl-status command line option

 	permission_error() (pibootctl.main.Application static method)

 	pi (pibootctl.parser.BootConditions attribute)

 	
 pibootctl-diff command line option

 	--json

 	--shell

 	--yaml

 	-h, --help

 	left

 	right

 	
 pibootctl-get command line option

 	--json

 	--shell

 	--yaml

 	-h, --help

 	setting

 	
 pibootctl-help command line option

 	-h, --help

 	command

 	setting

 	
 pibootctl-list command line option

 	--json

 	--shell

 	--yaml

 	-h, --help

 	
 pibootctl-load command line option

 	--no-backup

 	-h, --help

 	name

 	
 pibootctl-remove command line option

 	-f, --force

 	-h, --help

 	name

 	
 pibootctl-rename command line option

 	-f, --force

 	-h, --help

 	name

 	to

 	
 	
 pibootctl-save command line option

 	-f, --force

 	-h, --help

 	name

 	
 pibootctl-set command line option

 	--all

 	--json

 	--no-backup

 	--shell

 	--this-model

 	--this-serial

 	--yaml

 	-h, --help

 	name=[value]

 	
 pibootctl-show command line option

 	--json

 	--shell

 	--yaml

 	-a, --all

 	-h, --help

 	name

 	pattern

 	
 pibootctl-status command line option

 	--json

 	--shell

 	--yaml

 	-a, --all

 	-h, --help

 	pattern

 	pibootctl.exc (module)

 	pibootctl.files (module)

 	pibootctl.formatter (module)

 	pibootctl.info (module)

 	pibootctl.main (module)

 	pibootctl.parser (module)

 	pibootctl.setting (module)

 	pibootctl.settings (module)

 	pibootctl.store (module)

 	pibootctl.term (module)

 	pibootctl.userstr (module)

 	pretty_table (in module pibootctl.formatter)

R

 	
 	render() (in module pibootctl.formatter)

 	
 	
 right

 	pibootctl-diff command line option

S

 	
 	section (pibootctl.parser.BootSection attribute)

 	serial (pibootctl.parser.BootConditions attribute)

 	
 setting

 	pibootctl-get command line option

 	pibootctl-help command line option

 	Setting (class in pibootctl.setting)

 	Settings (class in pibootctl.store)

 	
 	SETTINGS (in module pibootctl.settings)

 	settings (pibootctl.store.BootConfiguration attribute)

 	Store (class in pibootctl.store)

 	store (pibootctl.main.Application attribute)

 	StoredConfiguration (class in pibootctl.store)

 	suppress() (pibootctl.parser.BootConditions method)

 	suppress_count (pibootctl.parser.BootConditions attribute)

 	syntax_error() (pibootctl.term.ErrorHandler static method)

T

 	
 	TableWrapper (class in pibootctl.formatter)

 	term_is_dumb() (in module pibootctl.term)

 	term_is_utf8() (in module pibootctl.term)

 	term_size() (in module pibootctl.term)

 	timestamp (pibootctl.parser.BootFile attribute)

 	(pibootctl.parser.BootParser attribute)

 	(pibootctl.store.BootConfiguration attribute)

 	
 	
 to

 	pibootctl-rename command line option

 	to_bool() (in module pibootctl.userstr)

 	to_float() (in module pibootctl.userstr)

 	to_int() (in module pibootctl.userstr)

 	to_list() (in module pibootctl.userstr)

 	to_str() (in module pibootctl.userstr)

 	TransMap (class in pibootctl.formatter)

U

 	
 	unicode_table (in module pibootctl.formatter)

 	update() (pibootctl.setting.Setting method)

 	(pibootctl.store.MutableConfiguration method)

 	
 	UserStr (class in pibootctl.userstr)

V

 	
 	validate() (pibootctl.setting.Setting method)

 	
 	value (pibootctl.setting.Setting attribute)

 	ValueWarning

W

 	
 	width (pibootctl.formatter.TableWrapper attribute)

 	
 	wrap() (pibootctl.formatter.TableWrapper method)

	diff

	Display the differences between the specified boot configuration and the
current one, or another specified configuration.

	get

	Retrieve the value of specified setting(s).

	help

	The default command, which describes the specified command or configuration
setting.

	list

	List the stored boot configurations.

	load

	Restore the named boot configuration to be used at the next boot.

	remove

	Delete the specified boot configuration.

	rename

	Rename the specified boot configuration.

	save

	Save the current boot configuration to the specified name.

	set

	Modify or reset the specified configuration setting(s).

	show

	Show the specified stored configuration.

	status

	Output the current boot configuration; by default this only prints modified
settings.

pibootctl

Synopsis

pibootctl [-h] [--version] command ...

Description

The pibootctl utility exists to query and manipulate the boot
configuration of the Raspberry Pi. It also permits easy storage and retrieval
of boot configurations. Each of the commands provided by the utility are listed
in the following section.

Commands

	diff

	Display the differences between the specified boot configuration and the
current one, or another specified configuration.

	get

	Retrieve the value of specified setting(s).

	help

	The default command, which describes the specified command or configuration
setting.

	list

	List the stored boot configurations.

	load

	Restore the named boot configuration to be used at the next boot.

	remove

	Delete the specified boot configuration.

	rename

	Rename the specified boot configuration.

	save

	Save the current boot configuration to the specified name.

	set

	Modify or reset the specified configuration setting(s).

	show

	Show the specified stored configuration.

	status

	Output the current boot configuration; by default this only prints modified
settings.

Usage

Typically, the status command is the first used, to determine the
current boot configuration:

$ pibootctl status
+------------------------+-------+
| Name | Value |
|------------------------+-------|
i2c.enabled	on
spi.enabled	on
video.overscan.enabled	off
+------------------------+-------+

After which the save command might be used to take a backup of the
configuration before editing it with the set command:

$ sudo pibootctl save default
$ sudo pibootctl set camera.enabled=on gpu.mem=128
$ sudo pibootctl save cam

Note

Note that commands which modify the content of the boot partition (e.g.
save and set) are executed with sudo as root
privileges are typically required.

The configuration of pibootctl itself dictates where the stored
configurations are placed on disk. By default this is under a “pibootctl”
directory on the boot partition, but this can be changed in the
pibootctl configuration. The application attempts to read its
configuration from the following locations on startup:

	/lib/pibootctl/pibootctl.conf

	/etc/pibootctl.conf

	$XDG_CONFIG_HOME/pibootctl.conf

The final location is only intended for developers working on
pibootctl itself. The others should be used by packages providing
pibootctl on your chosen OS.

Stored boot configurations are simply PKZIP files containing the files that
make up the boot configuration (sometimes this is just the config.txt
file, and sometimes other files may be included).

Note

In the event that your system is unable to boot (e.g. because of
mis-configuration), you can restore a stored boot configuration simply by
unzipping the stored configuration back into the root of the boot
partition.

In other words, you can simply place your Pi’s SD card in a Windows or MAC
OS X computer which should automatically mount the boot partition (which is
the only partition that these OS’ will understand on the card), find the
“pibootctl” folder and under there you should see all your stored
configurations as .zip files. Unzip one of these into the folder above
“pibootctl”, overwriting files as necessary and you have restored your boot
configuration.

The diff command can be used to discover the differences between
boot configurations:

$ pibootctl diff default
+------------------------+---------------+-------------+
| Name | <Current> | default |
|------------------------+---------------+-------------|
boot.firmware.filename	'start_x.elf'	'start.elf'
boot.firmware.fixup	'fixup_x.dat'	'fixup.dat'
camera.enabled	on	off
gpu.mem	128 (Mb)	64 (Mb)
+------------------------+---------------+-------------+

Note

Some settings indirectly affect others. Even though we did not explicitly
set boot.firmware.filename, setting camera.enabled affected its
default value.

The help command can be used to display the help screen for each
sub-command:

$ pibootctl help save
usage: pibootctl save [-h] [-f] name

Store the current boot configuration under a given name.

positional arguments:
 name The name to save the current boot configuration under; can
 include any characters legal in a filename

optional arguments:
 -h, --help show this help message and exit
 -f, --force Overwrite an existing configuration, if one exists

Additionally, help will accept setting names to display information
about the defaults and underlying commands each setting represents:

$ pibootctl help camera.enabled
 Name: camera.enabled
 Default: off
Command(s): start_x, start_debug, start_file, fixup_file

Enables loading the Pi camera module firmware. This implies that
start_x.elf (or start4x.elf) will be loaded as the GPU firmware rather than
the default start.elf (and the corresponding fixup file).

Note: with the camera firmware loaded, gpu.mem must be 64Mb or larger
(128Mb is recommended for most purposes; 256Mb may be required for complex
processing pipelines).

The list command can be used to display the content of the configuration
store, and load to restore previously saved configurations:

$ pibootctl list
+---------+--------+---------------------+
| Name | Active | Timestamp |
|---------+--------+---------------------|
| cam | x | 2020-03-11 21:29:56 |
| default | | 2020-03-11 21:29:13 |
+---------+--------+---------------------+
$ sudo pibootctl load default

 Typically, the status command is the first used, to determine the
current boot configuration:

$ pibootctl status
+------------------------+-------+
| Name | Value |
|------------------------+-------|
i2c.enabled	on
spi.enabled	on
video.overscan.enabled	off
+------------------------+-------+

After which the save command might be used to take a backup of the
configuration before editing it with the set command:

$ sudo pibootctl save default
$ sudo pibootctl set camera.enabled=on gpu.mem=128
$ sudo pibootctl save cam

Note

Note that commands which modify the content of the boot partition (e.g.
save and set) are executed with sudo as root
privileges are typically required.

The configuration of pibootctl itself dictates where the stored
configurations are placed on disk. By default this is under a “pibootctl”
directory on the boot partition, but this can be changed in the
pibootctl configuration. The application attempts to read its
configuration from the following locations on startup:

	/lib/pibootctl/pibootctl.conf

	/etc/pibootctl.conf

	$XDG_CONFIG_HOME/pibootctl.conf

The final location is only intended for developers working on
pibootctl itself. The others should be used by packages providing
pibootctl on your chosen OS.

Stored boot configurations are simply PKZIP files containing the files that
make up the boot configuration (sometimes this is just the config.txt
file, and sometimes other files may be included).

Note

In the event that your system is unable to boot (e.g. because of
mis-configuration), you can restore a stored boot configuration simply by
unzipping the stored configuration back into the root of the boot
partition.

In other words, you can simply place your Pi’s SD card in a Windows or MAC
OS X computer which should automatically mount the boot partition (which is
the only partition that these OS’ will understand on the card), find the
“pibootctl” folder and under there you should see all your stored
configurations as .zip files. Unzip one of these into the folder above
“pibootctl”, overwriting files as necessary and you have restored your boot
configuration.

The diff command can be used to discover the differences between
boot configurations:

$ pibootctl diff default
+------------------------+---------------+-------------+
| Name | <Current> | default |
|------------------------+---------------+-------------|
boot.firmware.filename	'start_x.elf'	'start.elf'
boot.firmware.fixup	'fixup_x.dat'	'fixup.dat'
camera.enabled	on	off
gpu.mem	128 (Mb)	64 (Mb)
+------------------------+---------------+-------------+

Note

Some settings indirectly affect others. Even though we did not explicitly
set boot.firmware.filename, setting camera.enabled affected its
default value.

The help command can be used to display the help screen for each
sub-command:

$ pibootctl help save
usage: pibootctl save [-h] [-f] name

Store the current boot configuration under a given name.

positional arguments:
 name The name to save the current boot configuration under; can
 include any characters legal in a filename

optional arguments:
 -h, --help show this help message and exit
 -f, --force Overwrite an existing configuration, if one exists

Additionally, help will accept setting names to display information
about the defaults and underlying commands each setting represents:

$ pibootctl help camera.enabled
 Name: camera.enabled
 Default: off
Command(s): start_x, start_debug, start_file, fixup_file

Enables loading the Pi camera module firmware. This implies that
start_x.elf (or start4x.elf) will be loaded as the GPU firmware rather than
the default start.elf (and the corresponding fixup file).

Note: with the camera firmware loaded, gpu.mem must be 64Mb or larger
(128Mb is recommended for most purposes; 256Mb may be required for complex
processing pipelines).

The list command can be used to display the content of the configuration
store, and load to restore previously saved configurations:

$ pibootctl list
+---------+--------+---------------------+
| Name | Active | Timestamp |
|---------+--------+---------------------|
| cam | x | 2020-03-11 21:29:56 |
| default | | 2020-03-11 21:29:13 |
+---------+--------+---------------------+
$ sudo pibootctl load default

 nav.xhtml

 Table of Contents

 		
 pibootctl

 		
 Installation

 		
 Configuration

 		
 User Manual

 		
 diff

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Usage

 		
 get

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Usage

 		
 help

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Usage

 		
 list

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Usage

 		
 load

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Usage

 		
 remove

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Usage

 		
 rename

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Usage

 		
 save

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Usage

 		
 set

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Usage

 		
 show

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Usage

 		
 status

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Usage

 		
 Development

 		
 Building the docs

 		
 Test suite

 		
 API

 		
 pibootctl.exc

 		
 pibootctl.files

 		
 pibootctl.formatter

 		
 pibootctl.info

 		
 pibootctl.main

 		
 pibootctl.parser

 		
 pibootctl.setting

 		
 pibootctl.settings

 		
 pibootctl.store

 		
 pibootctl.term

 		
 pibootctl.userstr

 		
 Changelog

 		
 Release 0.5 (2020-09-09)

 		
 Release 0.4 (2020-03-31)

 		
 Release 0.3 (2020-03-27)

 		
 Release 0.2 (2020-03-26)

 		
 Release 0.1.1 (2020-03-13)

 		
 Release 0.1 (2020-03-13)

 		
 License

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

_static/up-pressed.png

